Neil Gershenfeld

You are currently browsing articles tagged Neil Gershenfeld.

In an Edge essay, MIT physicist Neil Gershenfeld explains the far bigger applications of digital fabrication, which many now think of as merely an Etsy-friendly maker tool, describing mind-blowing processes long desired and feared, which could improve the world remarkably (or not). An excerpt:

A year ago for the White House Office of Science and Technology Policy, I ran a meeting because every federal agency pretty much wanted to talk to me about their 3D printing initiative. I was yelling at them that it’s sort of shuffling deckchairs. That’s not the new opportunity. I got together all of these agencies, and then I got together the people at the frontiers of this emerging field of the deep sense of digital fabrication as coding construction. What’s emerging from that is in a whole bunch of areas we’re discovering we can do things that were just not considered remotely possible before.       

On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we’re talking about. We’ve had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we’re developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process.                          

A step up from that, we had a paper in Science last year showing we can make the world’s highest performance ultralight material for things like airplanes by digitizing composites into little linked loops of carbon fiber instead of making giant pieces. Now we’re working with the aerospace industry on making printers of jumbo jets. But the printers are really assemblers.

Bigger scale, we’re working with Homeland Security on geoprinting. Extreme events like Katrina or Sandy do tens or hundreds of billions of dollars of damage. National technical means to defend against them are bags of wet sand. We’re now developing machines that are like robotic ribosomes that link discrete parts to build geological scale features to make landscape. We’re working with NASA on doing this in space, leading up to the idea of how you bootstrap a civilization. There’s a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore. You make a furnace and you melt it, and then you make hand tools, then slowly you bootstrap up to make a machine shop. When people think about a notion like colonizing space and bootstrapping a civilization, that’s what they’re thinking of implicitly.•

Tags:

When we’re truly wired, when the Internet of Things is the thing, when the revolution is not televised but quantified, and it’s all seamless so seamless, will we even know to smile? From a Foreign Affairs piece by Neil Gershenfeld and JP Vasseur:

The Internet of Things is not just science fiction; it has already arrived. Some of the things currently networked together send data over the public Internet, and some communicate over secure private networks, but all share common protocols that allow them to interoperate to help solve profound problems.

Take energy inefficiency. Buildings account for three-quarters of all electricity use in the United States, and of that, about one-third is wasted. Lights stay on when there is natural light available, and air is cooled even when the weather outside is more comfortable or a room is unoccupied. Sometimes fans move air in the wrong direction or heating and cooling systems are operated simultaneously. This enormous amount of waste persists because the behavior of thermostats and light bulbs are set when buildings are constructed; the wiring is fixed and the controllers are inaccessible. Only when the infrastructure itself becomes intelligent, with networked sensors and actuators, can the efficiency of a building be improved over the course of its lifetime.

Health care is another area of huge promise. The mismanagement of medication, for example, costs the health-care system billions of dollars per year. Shelves and pill bottles connected to the Internet can alert a forgetful patient when to take a pill, a pharmacist to make a refill, and a doctor when a dose is missed. Floors can call for help if a senior citizen has fallen, helping the elderly live independently. Wearable sensors could monitor one’s activity throughout the day and serve as personal coaches, improving health and saving costs.

Countless futuristic “smart houses” have yet to generate much interest in living in them. But the Internet of Things succeeds to the extent that it is invisible. A refrigerator could communicate with a grocery store to reorder food, with a bathroom scale to monitor a diet, with a power utility to lower electricity consumption during peak demand, and with its manufacturer when maintenance is needed. Switches and lights in a house could adapt to how spaces are used and to the time of day. Thermostats with access to calendars, beds, and cars could plan heating and cooling based on the location of the house’s occupants. Utilities today provide power and plumbing; these new services would provide safety, comfort, and convenience.

In cities, the Internet of Things will collect a wealth of new data. Understanding the flow of vehicles, utilities, and people is essential to maximizing the productivity of each, but traditionally, this has been measured poorly, if at all. If every street lamp, fire hydrant, bus, and crosswalk were connected to the Internet, then a city could generate real-time readouts of what’s working and what’s not. Rather than keeping this information internally, city hall could share open-source data sets with developers, as some cities are already doing.•

Tags: ,

From “How to Make Almost Anything,” Neil Gershenfeld’s new Foreign Affairs piece about the coming revolution of 3D printers, replicating machines that can replicate even themselves:

“Are there dangers to this sort of technology? In 1986, the engineer Eric Drexler, whose doctoral thesis at MIT was the first in molecular nanotechnology, wrote about what he called ‘gray goo,’ a doomsday scenario in which a self-reproducing system multiplies out of control, spreads over the earth, and consumes all its resources. In 2000, Bill Joy, a computing pioneer, wrote in Wired magazine about the threat of extremists building self-reproducing weapons of mass destruction. He concluded that there are some areas of research that humans should not pursue. In 2003, a worried Prince Charles asked the Royal Society, the United Kingdom’s fellowship of eminent scientists, to assess the risks of nanotechnology and self-replicating systems.

Although alarming, Drexler’s scenario does not apply to the self-reproducing assemblers that are now under development: these require an external source of power and the input of nonnatural materials. Although biological warfare is a serious concern, it is not a new one; there has been an arms race in biology going on since the dawn of evolution.

A more immediate threat is that digital fabrication could be used to produce weapons of individual destruction. An amateur gunsmith has already used a 3-D printer to make the lower receiver of a semiautomatic rifle, the AR-15. This heavily regulated part holds the bullets and carries the gun’s serial number. A German hacker made 3-D copies of tightly controlled police handcuff keys. Two of my own students, Will Langford and Matt Keeter, made master keys, without access to the originals, for luggage padlocks approved by the U.S. Transportation Security Administration. They x-rayed the locks with a CT scanner in our lab, used the data to build a 3-D computer model of the locks, worked out what the master key was, and then produced working keys with three different processes: numerically controlled milling, 3-D printing, and molding and casting.

These kinds of anecdotes have led to calls to regulate 3-D printers.” (Thanks Browser.)

Tags: , ,