George Porter

You are currently browsing articles tagged George Porter.

The New Republic has republished “The Billion-Dollar Fight Over Who Owns the Sun,” a 1975 article by Peter Barnes about the city of Santa Clara working to ensure our brightest star would be a public utility. The opening:

“The city of Santa Clara lies 50 miles south of San Francisco in a robustly sunny valley. As in much of California, rain is concentrated in the winter months, leaving nearly 300 days a year of clear skies. Until now no one paid much attention to the economic value of all that sunshine. But things are changing. By July the city will have completed a new recreation building that will draw about 80 percent of its heating and cooling energy from solar collectors mounted on the roof. After that the city itself will plunge into the solar energy business. ‘What we see is a city-owned solar utility,’ says City Manager Donald Von Raesfeld. ‘The city will finance and install solar heating and cooling systems in new buildings. Consumers will pay a monthly fee to cover amortization and maintenance of the solar units. This will be done on a nonprofit basis, with the capital raised through municipal bonds.’

Santa Clara isn’t alone in its effort to convert sunshine into useful energy. A recent survey listed 68 US buildings, either completed or near completion, that are getting some or all of their energy from the sun. Dozens of corporations are involved in solar research. The federal government is pouring millions of dollars into solar research and development projects. And while the big commitment of government and industry is still to fossil fuels and nuclear fission, energy from the sun is no longer dismissed as farfetched or far off. According to a Westinghouse study funded by the National Science Foundation, solar heating and cooling of buildings will be economically competitive in most parts of the country by 1985-90, and are already almost competitive in sunny regions like California and Florida. By the end of the century, says the NSF, the sun could provide more than one-third of the energy we use to heat and cool buildings, plus 20 to 30 percent of our electricity needs. It could dramatically reduce peak demands for electricity—mainly for summer air-conditioning — and conserve fossil fuels for petro-chemical uses for which there are no ready substitutes. Congress is equally enthused. Last year it passed five laws dealing wholly or partly with solar energy research, spreading money somewhat chaotically among the NSF, NASA, HUD and a new energy research and development agency.

The attractions of solar energy are apparent. It doesn’t pollute or otherwise damage the environment. It creates no dangerous waste products such as plutonium. It won’t run out for a few billion years. It can’t be embargoed by Arabs or anyone else. It’s virtually inflation proof once the basic set-up costs are met, and would wondrously improve our balance of payments. The technology involved, while still not perfected, is much less complex than nuclear technology. And of all energy sources the sun is the least amenable to control by cartel-like energy industry.

Why then has it taken so long to discover the sun? One reason is that the energy contained in sunshine is diffuse and fickle compared to the concentrated energy found in fossil fuels. As long as fossil fuels were plentiful and fairly easy to get at, it was considerably more profitable to collect and sell these stored forms of solar energy than to capture the sun’s current energy emissions. Another reason is the massive commitment of dollars and scientists the US made after World War II to the development of nuclear energy, a commitment that in retrospect appears to have derived at least partly from guilt over having unleashed the atom for destructive purposes, (‘If sunbeams were weapons of war, we would have had solar energy centuries ago,’ chemist George Porter has observed,) Solar energy is finally looking attractive because fossil fuels are no longer cheap, and because the drawbacks of nuclear fission—its hazards, huge capital costs, and low gains in net energy terms (it takes enormous amounts of energy to build reactors and prepare their fuel)—are now more widely appreciated.”

Tags: , ,